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Evidence against temperature chaos in mean-field and
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‡ Dipartimento di Fisica and INFN, Università di Roma La Sapienza, P A Moro 2, 00185 Rome,
Italy

Received 7 January 2000, in final form 2 May 2000

Abstract. We discuss temperature chaos in mean-field and realistic 3D spin glasses. Our
numerical simulations show no trace of a temperature chaotic behaviour for the system sizes
considered. We discuss the experimental and theoretical implications of these findings.

(Some figures in this article are in colour only in the electronic version; see www.iop.org)

The problem of chaos in spin glasses has been under investigations for many years [1–9]. Even
in the Sherrington–Kirkpatrick (SK) model, which is well understood with the Parisi solution
of the mean-field theory [10], the possible presence or absence of temperature chaos is still an
open problem. In contrast, for example, chaos induced by a magnetic field h was discussed
by Parisi [1] 15 years ago, and it is a clear feature of the replica symmetry breaking (RSB)
scenario. We will give here numerical evidence of the fact that, for all lattice sizes we are able
to investigate by using a state of the art optimized Monte Carlo method (see e.g. [11]), there
is no trace of temperature chaos in mean-field (infinite-range) and realistic spin glasses, in
contradiction with previous claims [2,5–9]. The question of temperature chaos can be phrased
by considering a typical equilibrium configuration at temperature T , and one (under the same
realization of the quenched disorder) at T ′ = T + dT , where dT is small: how similar are two
such configurations? In a chaos scenario for any non-zero dT the typical overlap would be
exponentially small in the RSB approach and decreasing as a power in the droplet approach as
a function of the system size. We study both SK and diluted mean-field (DMF) [12] models.
We consider the DMF model in its version with constant connectivity c = 6. Each lattice site
is connected to c other sites chosen at random. It is interesting to check whether this model has
the same features as the SK model. We also study the 3D Edwards–Anderson (EA) realistic
spin glass. In all models spin variables are Ising like (σ = ±1), and the couplings J can take the
two values ±1 with probability 1

2 . Our Monte Carlo dynamics is based on parallel tempering
(PT) [11]: we run in parallel two sets of copies of the system, and always take the overlap of
configurations from two different Markov chains. We use all standard precautions for checking
the thermalization of our data [11]. The indicator of a potential chaotic behaviour will be the

two-temperature overlap q
(2),(N)
T ′,T ≡ 〈( 1

N

∑N
i=1 σ

(T )
i τ

(T ′)
i )2〉. The usual square overlap q

(2),(N)
T ,T

is a special case of q
(2),(N)
T ′,T .

Let us start from the analysis of our data for the SK model. In figure 1 we plot the square
overlap for the two temperature values (0.4, T ) (i.e. the overlap of a copy of the system at
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Figure 1. q(2) at equal and different T values for the SK model, with N = 512 and 4096 sites.
The lower curve is the perturbative result for equal T q(2). See the text for details.

temperature T ′ = 0.4 with a copy of the system at T ∈ (0.4, 1.35)), and the one at equal
temperature (T , T ). The two upper (on the left side of the plot) dashed curves (merging at
T = 0.4 at a value close to 0.42) are for N = 512 spins (a small lattice size), the upper one
being the (0.4, T ) curve and the lower one the (T , T ) one. The two lower curves (merging
at T = 0.4 at a value close to 0.40) are for N = 4096 (our largest lattice for the SK model):
of these two lower curves, the solid upper curve is for (0.4, T ), while the dashed lower one
is the (T , T ) q(2). The fifth curve from the top, that stops at T = 0.7, is the perturbative
result for q

(2),(∞)
T ,T [13] (useful for checking our numerics and the quality of the approach to

the asymptotic large-volume limit). Here we only plot data from two lattice sizes, and do not
show the statistical errors, that are small enough not to affect any of the issues discussed here,
but would make the picture less readable. We show data for the lowest temperature we have
been able to thermalize, T ′ = 0.4. The same qualitative picture holds for larger T ′ values
(T ′ < Tc).

One notices at first glance from figure 1 that for both N values (and, as we will see, for all
N values and different systems we have analysed) q

(2),(N)
0.4,T � q

(2),(N)
T ,T (T � 0.4). This is what

happens in non-chaotic systems (for example ferromagnets, where q
(2),(N)
T ′,T = M(T )2M(T ′)2,

where M(T ) is the magnetization at temperature T ), and is very different from what would
happen in a system with T -chaotic states. The second crucial observation is that the distance
between q

(2),(N)
0.4,T and q

(2),(N)
T ,T , at fixed T > 0.4, decreases with N : the two curves even seem

to collapse at large N . This kind of behaviour shows the absence of temperature chaos in the
SK system and, as we will discuss in the following, in the DMF and 3D EA spin glasses. This
evidence, together with an understanding of the physical mechanism that is at the origin of this
behaviour (thanks to the analysis of P(q)), is the main point of this letter.

More quantitative evidence comes from figure 2, where we plot q
(2),(N)
0.4,T − q

(2),(N)
T ,T as a

function of T for the SK model with N = 256, 512, 1024, 2048 and 4096. Here the errors are
computed by an analysis of sample-to-sample fluctuations (it is important not to forget that the
points for different temperatures are strongly correlated, since they involve the same T = 0.4
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Figure 2. q
(2),(N)
0.4,T − q

(2),(N)
T ,T as a function of T for the SK model with different N values.

data, or data from different temperatures but nevertheless from the same PT simulation). In
the large-volume limit both contributions to the difference are zero for T > Tc = 1, so the
non-zero value of the curves in this regime gives us a measure of finite-size effects. Large
lattices have larger fluctuations. This is connected to the non-self-averagedness of PJ (q): the
peaks of PJ (q) become narrower for large lattices (eventually approaching δ-functions in the
large-volume limit), and averaging them to compute expectation values of the overlap gives a
wiggling behaviour, that becomes smooth only for a very large number of disorder samples.
We are not able to keep under control a precise fit of the data of figure 2 for N → ∞, but
the strong decrease of the difference of the data at large N is clear, and the possibility that the
limit is zero everywhere looks very plausible (it would be very interesting to understand this
behaviour theoretically).

We use figure 3 to try to understand better the mechanism governing how stable states
of the system vary as a function of T . We plot the probability distribution PJ (q) for a given
disorder realization of the SK model with N = 4096. We show, from top to bottom, the results
at T = 0.50, 0.45 and 0.40. The function PJ (q) should be symmetric around q = 0, since we
are at zero magnetic field. The level of symmetry reached by our finite-statistics sample is a
measure of the quality of our thermalization: from figure 3 it looks very good. Note that there
is no peak close to, or at, the origin: this disorder realization carries little weight in the q � 0
region. At the lowest T value there are five peaks for positive q, three of which are very well
separated. It is interesting to follow the evolution of PJ (q) from T = 0.50 down to 0.40. At
T = 0.50 there are basically two very broad peaks, that become resolved at T = 0.45: one
broad peak is divided into two clear peaks (that become very clear at T = 0.4), while the other
forms a three-peak structure, that have different weights at T = 0.4. What one sees in figure 3
is interesting since it constitutes a typical pattern: when lowering T , states start to contribute to
the PJ (q) by bifurcations (new peaks emerge) and by smooth rearrangements of the weights.
One never sees dramatic changes involving strong redistributions of weight among far-away
peaks, that would be typical of a chaotic situation: the phase space is obviously very complex,



L268 Letter to the Editor

0

300

-1 -0.5 0 0.5 1

T=0.4

0

300

-1 -0.5 0 0.5 1

T=0.45

0

300

-1 -0.5 0 0.5 1

T=0.5

Figure 3. PJ (q) for the same selected disorder realization at three different temperatures of the
SK model with N = 4096 sites.

as it has to be in a situation characterized by RSB [10], but the T dependence of the phase
space is smooth and non-chaotic.

The situation in the DMF model (where Tc � 2.07) is very similar to the one in the SK
model. In figure 4 we show the analogue of figure 2, for N = 64, 512 and 4096 spins. The
two figures are very similar, and even the size of the difference we are plotting is very similar
in the two models, when comparing the same values of N . The situation in the DMF model
looks exactly the same as that in the SK model: there is no temperature chaos.

The situation in the 3D EA model is different only in that finite-size effects are very large
(this is well known from numerical simulations [14]). In figure 5 we show q(2) at equal and
different T values for L = 4, 8 and 16. It is clear that q(2),(N) decreases noticeably with
N = L3 for all values of T . It is also remarkable that even at very large T values (with T far
larger than the estimated value of Tc � 1.16 [15, 16]) q(2),(N) is different from zero even at
N = 4096 = 163. Apart from that figure 5 shows a situation very similar to that of figure 1.
We are definitively not in a situation where q

(2),(N)
0.4,T goes to zero exponentially or as a power

and q
(2),(N)
T ,T goes to a non-zero limit (even if the distance between the two curves for L = 16

has become very small, and even negative in a certain temperature region). In figure 6 we
show the 3D analogue of figures 2 and 4. Again, even for T > Tc, on the smaller lattices one
has non-zero differences: finite-size effects are large, but apart from that the emerging picture
is analogous to the one we have found in the mean field (diluted and not). We want to stress
that in the 3D case one has to be even more careful since the lower critical dimension is very
close, and transient effects could be very misleading.

Now, before discussing the data, we give a few details about our runs. For the SK model
we use Tmin = 0.4 = 0.4Tc. We simulate N = 256, 512, 1024, 2048 and 4096: for the
different-N cases we have from 26 to 142 samples, a set of from 38 to 75 temperature values
with a dT from 0.025 to 0.0125. We run 200 000 sweeps except for the N = 4096 and 2048
lattices, where we run 400 000 sweeps (we always use for measurement only the second part
of the run). For the DMF model we have Tmin = 0.8 � 0.4Tc. We use from 640 to 1024
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Figure 4. As in figure 2, but for the DMF model, N = 64, 512 and 4096.
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Figure 5. q(2) at equal and different T values for the 3D EA model.

samples for N = 64, 512 and 4096. Here Tmax is 3, the number of temperatures from 45 to 89
and the number of iterations from 100 000 to 200 000. In the 3D EA model we use Tmin = 0.4,
Tmax = 2.075 (here Tc � 1.16) and a dT from 0.050 to 0.025. We have 1344 samples for
L = 4 (200 000 sweeps) and 8 (300 000 sweeps), and 64 samples for 163 (where Tmin = 0.5,
with 3450 000 sweeps; this is very many sweeps of many tempering copies). Our SK program
was multi-spin coded on different sites of the same system (we store 64 spins of the system
in the same word), while the DMF and 3D codes are multi-spin coded on different copies of
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Figure 6. q
(2),(N)
0.5,T − q

(2),(N)
T ,T as a function of T for the 3D EA model with different L values.

the system [17]†. We want to note that, as compared with previous numerical simulations, we
have been able (thanks to a large computational effort and to the use of PT) to thermalize the
systems at very low T values. It is also interesting to notice that in the N = 4096 case the 3D
EA model requires many more sweeps than the DMF and the SK model.

In all our simulations we do not observe any temperature chaos effect. This is true for
the SK model, the DMF and the 3D EA model: the three models behave very similarly. The
differences we have plotted, that would decrease exponentially in a RSB chaotic scenario, do
not decrease faster than logarithmically. Obviously from our numerical findings we cannot
be sure that things will not change for very large system sizes, but, again, we can claim that
the absence of any temperature chaotic behaviour is crystal clear on our lattice size. Two final
comments are in order. First, as we have already said, we cannot be sure about the behaviour
in the very-large-system limit: the difference between q

(2)
T ′,T and q

(2)
T ,T (for T ′ � 0.4Tc and

T > T ′) decreases with the system volume, and is close to zero on the larger lattice sizes
we can simulate. This difference could eventually become negative, and the correlation at
T �= T ′ could eventually drop faster on very large lattices: we can only say we do not see
any trace of that. The second comment is that, in any case, our results have an experimental
relevance: the number of spins that are equilibrated during a real experiment is of an order of
magnitude only slightly larger than the order of magnitude of the one we can thermalize in our
numerical simulations [18], so our results strongly suggest the absence of temperature chaos
in real experiments.

The previous work of other authors on chaos was pointing toward the presence of
temperature chaos. On one hand in this context the analytic computations have by no means an
unambiguous meaning, since they are based on strong assumptions or on a perturbative and/or
approximate treatment. On the other hand numerical computations of older generations were
much limited in scope as compared with what we can do now. For example, Ritort numerical
computation [7], that correctly, in the limit of the gathered data, found chaos, used a T starting

† Our code is based on the unpublished work of F Zuliani (1998).
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value of 0.4, and a dT of 0.5 (as compared with the value of 0.0125 we have been able to use
here), i.e. was comparing T = 0.4 with 0.9 (where Tc = 1) on a reasonably small lattice. In
this case the decrease of the overlap is clear, but turns out to be due to the finite-size effect
(since even the equal T overlap has to go to zero at Tc).

One further word of caution (together with the caveat we have already issued) is
appropriate: it is clear that in order to obtain reliable evidence about the presence or the
absence of chaos we need to be able to measure in an appropriate window of temperature
jumps. Too large a jump would surely make the measurement biased from the presence of Tc,
while too small a jump would not allow the overlap length to be small enough to be measured.
These conflicting criteria can represent a potential problem with the interpretation of the data.

A last comment (following, for example, [19]) concerns the relevance of the absence of
chaos for the description of realistic, finite-dimensional spin glasses. In short the absence
of a temperature chaotic behaviour makes a modified droplet-like description of realistic
spin glasses impossible (the original droplet model cannot work, for example, because of
the observed dynamical scaling of the energy barriers).

Following [19] one notices that the very weak dependence of spin glass physical properties
on the cooling rate is not plausible in a scenario of activated domain growth. Only arguing
that there is temperature chaos can one reconcile the negligible effect of the cooling rate with
a droplet picture. The absence of temperature chaos makes this reconciliation impossible.

We are aware that G Parisi and T Rizzo in a perturbative computation close to Tc find absence
of temperature chaos (at the order they compute, but not necessarily at all orders in perturbation
theory), both in the SK and DMF models. S Franz and I Kondor have connected evidence
that excludes temperature chaos at lowest orders close to Tc. We deeply thank all of the
above, together with J-P Bouchaud and F Ritort, for interesting conversations. The numerical
simulations have used, together with a number of workstations, computer time from the
Grenoble T3E Cray and the Cagliari Linux cluster Kalix2 (funded by the Italian MURST
under a COFIN grant).
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